The Extended Krylov Subspace Method and Orthogonal Laurent Polynomials

نویسندگان

  • CARL JAGELS
  • LOTHAR REICHEL
  • Henk van der Vorst
چکیده

Abstract. The need to evaluate expressions of the form f(A)v, where A is a large sparse or structured symmetric matrix, v is a vector, and f is a nonlinear function, arises in many applications. The extended Krylov subspace method can be an attractive scheme for computing approximations of such expressions. This method projects the approximation problem onto an extended Krylov subspace K(A) = span{Av, . . . , Av,v, Av, . . . , Av} of fairly small dimension, and then solves the small approximation problem so obtained. We review available results for the extended Krylov subspace method and relate them to properties of Laurent polynomials. The structure of the projected problem receives particular attention. We are concerned with the situations when m = l and m = 2l.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMPUTING exp(−τA)b WITH LAGUERRE POLYNOMIALS

Abstract. This paper discusses a method based on Laguerre polynomials combined with a Filtered Conjugate Residual (FCR) framework to compute the product of the exponential of a matrix by a vector. The method implicitly uses an expansion of the exponential function in a series of orthogonal Laguerre polynomials, much like existing methods based on Chebyshev polynomials do. Owing to the fact that...

متن کامل

Convergence analysis of the extended Krylov subspace method for the Lyapunov equation

The Extended Krylov Subspace Method has recently arisen as a competitive method for solving large-scale Lyapunov equations. Using the theoretical framework of orthogonal rational functions, in this paper we provide a general a-priori error estimate when the known term has rankone. Special cases, such as symmetric coefficient matrix, are also treated. Numerical experiments confirm the proved the...

متن کامل

Formal orthogonal polynomials for an arbitrary moment matrix and Lanczos type methods∗

We give a framework for formal orthogonal polynomials with respect to an arbitrary moment matrix. When the moment matrix is Hankel, this simplifies to the classical framework. The relation with Padé approximation and with Krylov subspace methods is given. 1 Formal block orthogonal polynomials We consider a linear functional defined on the space of polynomials in two variables, defined by the mo...

متن کامل

A Preconditioned Recycling GMRES Solver for Stochastic Helmholtz Problems

We present a parallel Schwarz type domain decomposition preconditioned recycling Krylov subspace method for the numerical solution of stochastic indefinite elliptic equations with two random coefficients. Karhunen-Loève expansions are used to represent the stochastic variables and the stochastic Galerkin method with double orthogonal polynomials is used to derive a sequence of uncoupled determi...

متن کامل

Computing Approximate Extended Krylov Subspaces without Explicit Inversion

It will be shown that extended Krylov subspaces –under some assumptions– can be retrieved without any explicit inversion or system solves involved. Instead we do the necessary computations of A−1v in an implicit way using the information from an enlarged standard Krylov subspace. It is well-known that both for classical and extended Krylov spaces, direct unitary similarity transformations exist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009